

Volume 3, Issue 1, July 2024

E-ISSN: 2583-8822

1

Al – Structure On F – Relation L - Fuzzy Supratopological Systems

Dr.M.Annalakshmi, V.H.N. SenthikumaraNadar College (Autonomous), Virudhunagar - 626001. Tamilnadu, India.

Abstract:

We introduced, Algebraic structure on L-fuzzy topological system which is described in L-fuzzy relation. Moreover, the paper Algebraic structure on F-relation L-fuzzy supratopological system provide with cloudless examples.

AMS Classification: 54A40, 03E72, 06F35

Keywords: BCK/BCI Algebra, TM-Algebra, Fuzzy Relations, Fuzzy Topology

1.INTRODUCTION

Fuzzy concept introduced by L.A.Zadeh [25] at 1965 and developed the Fuzzy relation at 1971. Chang [18], Wong [24] ,Lowen [22] and others developed the fuzzy topological spaces. In 2010, Tamilarasi and Manimegalai introduced a new class of algebras called TM-algebras [23].

We introduced the concept in [1], Fuzzy Topological subsystem on a TM-algebra. We studied in [2], L– Fuzzy Topological TM-system. We developed the concept in [3], L– Fuzzy Topological TM-subsystem. In [4], [5] we studied Fuzzy Supratopological TMsystem, Fuzzy α – supracontinuous functions. In this paper, discuss the notion of an AL – Structure on F – Relation L – Fuzzy Supratopological systems and investigate some simple properties.

2. PRELIMINARIES

In this section we recall some basic definitions that are required in the sequel.

Definition 2.1.

For any non-empty set X, $\mu: X \to [0, 1]$ is called a fuzzy set of X.

Definition 2.2.

The union $A \cup B$, of two fuzzy sets A and B of a set X, is defined to be the fuzzy set $(A \cup B)(x) = Max \{\mu_A(x), \mu_B(x)\} \ \forall \ x \in X$.

Definition 2.3.

The intersection $A \cap B$, of two fuzzy sets A and B of a set X, is defined to be the fuzzy set $(A \cap B)(x) = Min \{\mu_A(x), \mu_B(x)\} \ \forall \ x \in X$.

Definition 2.4.

For any two fuzzy sets A and B of X . A \subset B if $A(x) \leq B(x) \forall x \in X$.

Definition 2.5.

Let A be a fuzzy set of X. Then the complement of A denoted by, A_0 , is defined to be $A_0(x) = 1 - A(x) \ \forall \ x \in X$.

Definition 2.6.

A fuzzy topology is a family T of fuzzy sets in X which satisfies the following conditions.

Be-Ecofriendly Save Trees Save Life

A Peer Reviewed Journal

Volume 3, Issue 1, July 2024 E-ISSN: 2583-8822

- (1) φ , $X \in T$
- (2) If A, B \in T then A \cap B \in T
- (3) If $A_i \in T$ for each $i \in I$ then $\bigcup IA_i \in T$ where I is an indexing set.

Definition 2.7.

A TM-Algebra (X, *, 0) is a non-empty set X with a constant 0 and a binary operation * satisfying the following axioms:

- (1) x * 0 = x
- (2) (x * y) * (x * z) = z * y for all $x, y, z \in X$.

Definition 2.8. Fuzzy TM-Subalgebra

A fuzzy subset μ of a TM-Algebra (X, *, 0) is called a fuzzy TM-Subalgebra of X if , for all $x,y\in X$, $\mu(x*y)\geq \min$ { $\mu(x)$, $\mu(y)$ }

Definition 2.9. μ and σ are two fuzzy sets in a fuzzy topological space (X, T). σ is said to be an interior of μ if μ is a neighbourhood of σ and $\mu \supset \sigma$.

Definition 2.10. Fuzzy Relation

Consider the Cartesian product $A \times B = \{(x, y) : x \in A, y \in B\}$ where A and B in universal sets U and V correspondingly. A fuzzy relation on $A \times B$ denoted by R or R(x, y) is defined as the set $R = \{(x,y), \mu_R(x,y) : (x,y) \in A \times B, \mu_R(x,y) \in [0,1]\}$

Definition 2.11. The union of fuzzy relations R_1 and R_2 is denoted by $R_1 \cup R_2$ is defined by $\mu_{R_1 \cup R_2}(x,y) = Min \{\mu_{R_1}(x,y), \mu_{R_2}(x,y)\}, (x,y) \in A \times B$

The intersection of fuzzy relations R_1 and R_2 is denoted by $R_1 \cap R_2$ is defined by $\mu_{R_1 \cap R_2}(x,y) = Max \{\mu_{R_1}(x,y), \mu_{R_2}(x,y)\}, (x,y) \in A \times B$

3. AL - STRUCTURE ON F- RELATION L - FUZZY SUPRATOPOLOGICAL SYSTEMS

Definition 3.1.

X, Y are TM-Algebras. $R_1(x,y)$, $R_2(x,y)$ are an L-fuzzy relations of X, Y. AL - structrue on F - relation L - Fuzzy Supratopological System is a family T of L - fuzzy subalgebras in (X, Y, T) which is satisfies the conditions:

i) ϕ , $X \in T$ ii) If $\mu_i(x, y) \in T$ for each $i \in I$ then $\cup_I \mu_i(x, y) \in T$ where I is an indexing L-subalgebra.

Example 3.2. The set $X = \{0, 1, 2\}, Y = \{0, 1, 2\}$ with the cayley table

*	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

AnL-fuzzy relations $R_1(x, y), R_2(x, y)$ are on the sets X, Y is

X, Y	0	1	2
0	(0, 0)	(0, 1)	(0, 2)
1	(1, 0)	(1, 1)	(1, 2)

Be-Ecofriendly Save Trees Save Life

2

A Peer Reviewed Journal

Volume 3, Issue 1, July 2024

E-ISSN: 2583-8822

The F – Relations L – Subalgebras
$$\mu_i: X \to [0,1], i = 1,2,3, \vartheta_i: Y \to [0,1], i = 1,2,3$$
 are

$$\mu_{1}(x, y) = \begin{cases} t_{4} \ if \ x = (0,0) \\ t_{3} \ if \ x = (0,1) \\ t_{1} \ if \ x = (0,2) \end{cases} \\ \mu_{2}(x, y) = \begin{cases} t_{6} \ if \ x = (1,0) \\ t_{5} \ if \ x = (1,1).3 \\ t_{3} \ if \ x = (1,2) \end{cases} \\ \mu_{3}(x, y) = \begin{cases} t_{6} \ if \ x = (2,0) \\ t_{3} \ if \ x = (2,1) \\ t_{1} \ if \ x = (2,2) \end{cases}$$

$$\vartheta_{1}(x,y) = \begin{cases} t_{8} \text{ if } x = (0,0) \\ t_{6} \text{ if } x = (0,1) \vartheta_{2}(x,y) = \\ t_{2} \text{ if } x = (0,2) \end{cases} \begin{cases} t_{4} \text{ if } x = (1,0) \\ t_{2} \text{ if } x = (1,1) \vartheta_{3}(x,y) = \\ t_{1} \text{ if } x = (1,2) \end{cases} \begin{cases} t_{5} \text{ if } x = (2,0) \\ t_{4} \text{ if } x = (2,1) \\ t_{2} \text{ if } x = (2,2) \end{cases}$$

A family $T = \{\mu_1, \mu_2, \mu_3, \vartheta_1, \vartheta_2, \vartheta_3\}$ which is satisfying the AL – Structure on F - relation L-fuzzy Supratopolalogical system (X,Y, T).

Definition 3.3.

X, Y are TM-Algebras. $R_1(x,y)$ and $R_2(x,y)$ are an L-fuzzy relations of X, Y. AL-structrue on L-Fuzzy relation supratopological System (X, Y, Y). L-Fuzzy relation subalgebra $\mathcal N$ in L-fuzzy supratopological system, is an L-fuzzy relation neighbourhood of an L-fuzzy relation subalgebra $\mathcal M$ if there exist an T-open L-fuzzy relation subalgebra $\mathcal D$ such that $\mathcal M \subset \mathcal D \subset \mathcal N$

$$ie\mathcal{M}(x, y) \leq \mathcal{D}(x, y) \leq \mathcal{N}(x, y)$$
 for all $x \in X, y \in Y$

Example 3.4.

 $\mu_i(x, y)$, i = 1, 2, 3, $\vartheta_i(x, y)$, i = 1, 2, 3 are an L-fuzzy relation subalgebras of anL-fuzzy supratopological system given in example 3.2

 $T = \{ \phi, X, \mu_1, \mu_2, \mu_3, \vartheta_1, \vartheta_2, \vartheta_3 \}$ is an L-fuzzy relation on L-fuzzy supratopological system (X, Y, T). $\mu_2(x, y)$ is L-fuzzy relation neighbourhood of an L-fuzzy relation subalgebra $\mu_1(x, y)$ for $\mu_1(x, y) \le \vartheta_2(x, y) \le \mu_2(x, y)$

Definition 3.5.

X, Y are TM-Algebras. $R_1(x,y)$ and $R_2(x,y)$ are an L-fuzzy relations of X, Y. AL -structrue on L-Fuzzy relation supratopological System (X, Y, T). The L-fuzzy relation interior of μ^* (x, y) is the union of all L-fuzzy relation open subalgebras contained in μ^* (x, y) and it is denoted by $(\mu^*)^{\circ}(x,y)$. That is $(\mu^*)^{\circ}(x,y) = \bigcup \{\mu(x,y) : \mu(x,y) \subseteq \mu^*(x,y), \mu(x,y) \in (X,Y,T)\}$

Example 3.6.

 $\mu_i(x, y)$, i = 1, 2, 3, $\vartheta_i(x, y)$, i = 1, 2, 3 are an L-fuzzy relation subalgebras of the L-fuzzy supratopological system given in example 3.2

 $T = \{ \phi, X, \mu_1, \mu_2, \mu_3, \vartheta_1, \vartheta_2, \vartheta_3 \}$ is L-fuzzy relation on fuzzy supratopological system (X, Y, T).

The L-fuzzy relation interior of μ^* $(x, y) = \mu_3(x, y)$ is $(\mu_3)^{\circ}(x, y) = \bigcup \{\mu_1, \vartheta_2, \vartheta_3\} = \mu_1(x, y)$ **Theorem 3.7.**

X, Y are TM-Algebras. $R_1(x, y)$ and $R_2(x, y)$ are an L-fuzzy relations of X, Y. AL - structrue on L-Fuzzy relation supratopological System (X, Y, T). L-Fuzzy relation

3

A Peer Reviewed Journal

Volume 3, Issue 1, July 2024

E-ISSN: 2583-8822

4

subalgebra $\mathcal{A}(x, y)$ is open in (X, Y, T) if and only if for each L-fuzzy relation subalgebra $\mathcal{B}(x, y)$ y) contained in $\mathcal{A}(x, y)$, $\mathcal{A}(x, y)$ is L-fuzzy relation neighbourhood of $\mathcal{B}(x, y)$.

Proof:

An L-fuzzy relation subalgebra $\mathcal{A}(x, y)$ is open in (X, Y, T).

 $\mathcal{B}(x, y)$ is any L-fuzzy relation subalgebra contained in $\mathcal{A}(x, y)$. Since $\mathcal{A}(x, y)$ is open and $\mathcal{B}(x, y) \subset \mathcal{A}(x, y)$, $\mathcal{B}(x, y) \subset \mathcal{A}(x, y) \subset \mathcal{A}(x, y)$

 $\therefore \mathcal{A}(x, y)$ is L-fuzzy relation neighbourhood of $\mathcal{B}(x, y)$.

Conversely, for each L-fuzzy relation subalgebra $\mathcal{B}(x, y)$ contained in $\mathcal{A}(x, y)$, $\mathcal{A}(x, y)$ is Lfuzzy neighbourhood of $\mathcal{B}(x, y)$.

for $\mathcal{A}(x, y) \subset \mathcal{A}(x, y)$, by our assumption, $\mathcal{A}(x, y)$ is an L-fuzzy relation neighbourhood of

Hence there exits an open L-fuzzy relation subalgebra $\mathcal{O}(x, y)$ such that $\mathcal{A}(x, y) \subset \mathcal{O}(x, y)$ $\subset \mathcal{A}(x, y)$.

Hence $\mathcal{A}(x, y) = \mathcal{O}(x, y)$ and $\mathcal{A}(x, y)$ is open in (X, Y, T)

Definition 3.8.

X, Y are TM-Algebras. $R_1(x, y)$ and $R_2(x, y)$ are an L-fuzzy relations of X, Y. AL structrue on L-Fuzzy relation supratopological System (X, Y, T). $\mu(x, y)$ is L-fuzzy relation subalgebra in (X, Y, T). The collection of L-fuzzy relation neighbourhood of $\mu(x, y)$ is the set $\mathcal{U}(x, y)$ is said to be an L-fuzzy relation neighbourhood system of $\mu(x, y)$.

Theorem 3.9.

X, Y are TM-Algebras. $R_1(x, y)$ and $R_2(x, y)$ are anL-fuzzy relations of X, Y. AL - structrue on L-Fuzzy relation supratopological System (X, Y, T). $\mu(x, y)$ is an L-fuzzy relation subalgebra in (X, Y, T). $\mathcal{U}(x, y)$ is an L-fuzzy relation neighbourhood system of L-fuzzy relation subalgebra $\mu(x, y)$. then

i) The finite intersections of elements of $\mathcal{U}(x, y)$ belong to $\mathcal{U}(x, y)$

ii) An L-Fuzzy relation subalgebra of (X, Y, T) which contain a element of $\mathcal{U}(x, y)$ belong to $\mathcal{U}(x, y)$

Proof:

i) AnL-fuzzy relations $R_1(x, y)$ and $R_2(x, y)$ are anL-fuzzy supratopological system(X, Y, T). $\mu(x, y)$ is an L-fuzzy relation subalgebra in (X, Y, T).

 $\mathcal{U}(x, y)$ is an L-fuzzy relation neighbourhood system of $\mu(x, y)$.

The elements g(x, y), $h(x, y) \in \mathcal{U}(x, y)$ Hence g(x, y) and h(x, y) are an L-fuzzy relation neighbourhood of $\mu(x, y)$.

Thus there exits open an L-fuzzy relation subalgebras $g_{\circ}(x, y)$ and $h_{\circ}(x, y)$ Such that $\mu(x, y)$ $\subset g_{\circ}(x, y) \subset g(x, y)$ and $\mu(x, y) \subset h_{\circ}(x, y) \subset h(x, y)$ respectively.

Hence, $\mu(x, y) \subset g_{\circ}(x, y) \cap h_{\circ}(x, y) \subset g(x, y) \cap h(x, y)$

 \Rightarrow g(x, y) \cap h(x, y) is an L-fuzzy relation neighbourhood of μ (x, y).

Hence, the intersection of two elements of $\mathcal{U}(x, y)$ is again a element of $\mathcal{U}(x, y)$.

Hence the intersection of any finite number of elements of $\mathcal{U}(x, y)$ is again a element of \mathcal{U}

ii) g(x, y) is an L-fuzzy relation subalgebra that contains a element of $\mathcal{U}(x, y)$ say u(x, y).

Be-Ecofriendly Save Trees Save Life

E-ISSN: 2583-8822

Volume 3, Issue 1, July 2024

Hence, g(x, y) contains a neighbourhood u(x, y) of $\mu(x, y)$. That is $u(x, y) \subset g(x, y)$, $u(x, y) \in \mathcal{U}(x, y)$

since u(x, y) is an L-fuzzy relation neighbourhood of $\mu(x, y)$ then by definition there exists a open L-fuzzy relation subalgebra o(x, y).

 $\Rightarrow \mu(x, y) \subset o(x, y) \subset u(x, y) \subset g(x, y).$

Therefore $\mu(x, y) \subset o(x, y) \subset g(x, y)$

 \Rightarrow g(x, y) is an L-fuzzy relation neighbourhood of μ (x, y).

 \therefore g(x, y) $\in \mathcal{U}$ (x, y)

References

- [1] Annalakshmi. M., Chandramouleeswaran. M, Fuzzy Topological subsystem on a TMalgebra, International Journal of Pure and Applied Mathematics, Vol.94, No.3 2014, 439-449.
- [2] Annalakshmi. M., Chandramouleeswaran. M, On L- Fuzzy Topological TM-system, International Journal of Mathematical Science and Engineering Applications, Vol.8, No. IV (July 2014) PP. 135 -145.
- [3] Annalakshmi. M., Chandramouleeswaran. M, On L-Fuzzy Topological TM-subsystem, Italian Journal of Pure and Applied Mathematics - N. 33 - 2014 (359-368) 8.
- [4] Annalakshmi. M., Chandramouleeswaran. M, Fuzzy supratopological TM-system, International Journal of Pure and Applied Mathematics, Vol. 98, No. 5 2015, 55-61.
- [5] Annalakshmi. M., Chandramouleeswaran. M, Fuzzy and L- Fuzzy compactness in a Fuzzy Topological TM-system, Global Journal of Pure and Applied Mathematics, Vol11, No.1 2015, PP491-498.
- [6] Annalakshmi. M., Chandramouleeswaran. M, Fuzzy α- supracontiuous functions, *International Journal of Mathematical Archive* -6(5),2015,116-119.
- [7] Annalakshmi. M., Chandramouleeswaran. M, Interior and Closure of Fuzzy open sets in a Fuzzy Topological TM-system, Global Journal of Pure and Applied Mathematics, Vol.11, No.5 (2015), PP 3157-3164.
- [8] Annalakshmi, M., Chandramouleeswaran, M., Fuzzy Connected on Fuzzy Topological TM-system, International Journal of Pure and Applied Mathematics- Vol-112, No.5, pp.93-102.
- [9] Annalakshmi. M., Chandramouleeswaran. M., Fuzzy Supratopological TM-Subsystem, Mathematical Sciences International Research Journal, Vol 6, Spl Issue Dec 2017, PP 243-247.
- [10] Annalakshmi. M., Chandramouleeswaran. M, An L- Fuzzy α- Supratopological TM-Subsystem, International Journal of Computer Science, ISSN:2348-6600.
- [11] Annalakshmi. M., Chandramouleeswaran. M, An L Fuzzy Connected on L Fuzzy Topological TM-system, International Journal of Mathematical Archive- Vol-5, No.5, May 2018 pp.1-6.
- [12] Annalakshmi. M, An L Fuzzy α- supracontiuous in α- supratopological TM-System, International Journal of Mathematical Archieve-10(11), 2019, ISSN 2229-5046, PP 1-6.

5

A Peer Reviewed Journal

Volume 3, Issue 1, July 2024

E-ISSN: 2583-8822

6

- [13] Annalakshmi. M, An L Fuzzy supratopological TM-System, *International Journal of Computer Science*, Jan 2018 ISSN 2348-6600 PP 410- 416.
- [14] Annalakshmi. M, L-Fuzzy connected on L-Fuzzy Supratopological TM-Systems, Recent advances in Arts, Science and social sciences, ISBN:978-81-951746-3-8.
- [15] Annalakshmi. M, An Intuitionistic L-Fuzzy topological TM-systems, Journal of Information and Computational Science - ISSN 1548-7741, vol.12,Issue.1-2022, pg 26-33.
- [16] Annalakshmi. M, An Intuitionistic Fuzzy Topological TM-Subsystems, International *Journal of Research and Analytical Reviews*, Vol 9, Issue 1,660-666.
- [17] Annalakshmi. M, An Intuitionistic L-Fuzzy Topological TM-Subsystems, International *Journal of All Research Education and Scientific Methods*, Vol 10, Issue 2.
- [18] Annalakshmi.M, AL-Structure on FuzzyRelation Supratopological Systems, *International Journal of Research And Analytical Reviews*, Vol 10, Issue 4, pp. 485-491.
- [19] Annalakshmi. M., N.Sugantha Meena. AL-Structure on F- Relation L-Fuzzy Topological Systems, *International Journal of All Research Education and Scientific Methods*, Vol 12, Issue3, pp. 3202-3206.
- [20] Chang C.L., Fuzzy Topological Spaces, *Journal of Mathematical Analysis and Applications*, Vol.24, (1968), pp. 182-190.
- [21] Gyanendrakumar panda, On the theory of fuzzy relations, *Technical research organisation*, India, ISSN: 2395-7786, vol 2, Issue 4.
- [22] Imai.Y and Iseki.K., On axiom systems of Propositional Calculi, XVI Proc. *Japan Acad. Ser A. Math. Sci.*, 42 (1966), 19-22.
- [23] Iseki. K. On BCI-algebras, Math. Seminar Notes. 11(1980), pp.313-320.
- [24] Lowen. R, Fuzzy topological spaces fuzzy compactness, *J.Math.Anal.Appl.*56 (1976), 621-633.
- [25] Tamilarasi. A and Megalai. K, TM- algebra an introduction, CASCT., (2010).
- [26] Wong.C.K ,Fuzzy Topology: Product and quotient theorems, *J.Math. Anal.Appl.* 45(1974), 512-521.
- [27] Zadeh.L.A, Fuzzy sets, Inform.control 8 (1965),338-353

Author Contribution Statement: NIL.

Author Acknowledgement: NIL.

Author Declaration: I declare that there is no competing interest in the content and authorship of this scholarly work.

The content of the article is licensed under https://creativecommons.org/licenses/by/4.0/ International License.

Be-Ecofriendly Save Trees Save Life